1. Введение
1.1. Определение и охват рынка
1.2. Методология исследования
1.2.1. Первичное исследование
1.2.2. Вторичное исследование
1.2.3. Проверка данных и предположения
1.3. Структура сегментации рынка
2. Краткое содержание
2.1. Обзор рынка
2.2. Основные выводы
2.3. Рекомендации аналитиков
2.4. Прогноз рынка (2025–2035)
3. Динамика рынка
3.1. Движущие силы рынка
3.2. Ограничения рынка
3.3. Возможности рынка
3.4. Проблемы и риски
3.5. Анализ цепочки создания стоимости
3.6. Анализ пяти сил Портера
4. Охлаждение центров обработки данных в Индии – Оценка и прогноз рынка
4.1. Исторический размер рынка (2020–2025)
4.2. Прогнозируемый размер рынка (2026–2035)
4.3. Анализ темпов роста рынка
4.4. Прогноз рынка по странам
5. Анализ капитальных затрат (CapEx)
5.1. Тенденции CapEx по решениям для охлаждения
5.1.1. Инвестиционные модели в воздушное, жидкостное, гибридное и погружное охлаждение
5.1.2. Доля CapEx по типу оборудования для охлаждения (CRAC/CRAH, чиллеры, градирни, экономайзеры и т.д.)
5.1.3. Страновые тенденции CapEx
5.1.4. Анализ инвестиций OEM против модернизации
5.2. Анализ возврата инвестиций (ROI) и срока окупаемости
5.2.1. ROI по типу технологии охлаждения
5.2.2. Сравнение затрат и выгод: воздушное охлаждение против жидкостного охлаждения против погружного охлаждения
5.2.3. Срок окупаемости в центрах обработки данных уровня I–IV
5.2.4. Примеры экономии затрат за счет внедрения энергоэффективного охлаждения
6. Мощности и использование охлаждения центров обработки данных
6.1. Установленная мощность (МВт и кв. футы) по решениям для охлаждения
6.1.1. Установленная мощность охлаждения по типу решения и стране
6.1.2. Плотность системы охлаждения (кВт/стойка и на кв. фут)
6.1.3. Тенденции расширения мощности по гипермасштабированию, колокации и корпоративным решениям
6.2. Коэффициенты использования и показатели эффективности
6.2.1. Использование системы охлаждения против проектной мощности
6.2.2. Практики управления средними и пиковыми нагрузками
6.2.3. Жизненный цикл оборудования и эталонные показатели производительности
6.3. Эффективность использования энергии (PUE) и энергоэффективность
6.3.1. Средний PUE по размеру дата-центра и технологии охлаждения
6.3.2. Сравнение традиционных и экологически чистых систем охлаждения
6.3.3. Вклад системы охлаждения в общее энергопотребление объекта
6.4. Плотность стоек и эффективность охлаждения
6.4.1. Тенденции средней плотности стоек (кВт/стойка)
6.4.2. Адекватность охлаждения против нагрузки на стойку
6.4.3. Взаимосвязь между высокоплотными рабочими нагрузками (ИИ, HPC) и требованиями к охлаждению
7. Рынок охлаждения дата-центров, анализ энергопотребления и потребления ресурсов
7.1. Анализ энергопотребления
7.1.1. Общее энергопотребление по типу решения для охлаждения (на основе воздуха, жидкости, гибридное, погружное)
7.1.2. Энергоемкость на МВт ИТ-нагрузки
7.1.3. Доля энергии на охлаждение в общем энергопотреблении объекта (коэффициент нагрузки на охлаждение)
7.1.4. Годовой коэффициент энергоэффективности (EER / SEER) по типу системы охлаждения
7.1.5. Тенденция снижения энергопотребления за счет автоматизации, ИИ и технологий свободного охлаждения
7.2. Анализ потребления воды
7.2.1. Эффективность использования воды (WUE) – литры на кВтч ИТ-нагрузки
7.2.2. Потребление воды по технологии охлаждения (испарительное охлаждение, адиабатическое охлаждение и т.д.)
7.2.3. Системы рециркуляции и повторного использования воды в дата-центрах
7.2.4. Влияние национальных норм по дефициту воды на выбор системы охлаждения
7.2.5. Переход от водоемких к воздушным или гибридным системам
7.3. Совмещенные показатели энерго-водной эффективности
7.3.1. Энергетико-водный баланс в оптимизации охлаждения
7.3.2. Корреляция между PUE, WUE и общими эксплуатационными затратами (OpEx)
7.3.3. Примеры внедрения систем охлаждения без использования воды или с нулевым потреблением воды
7.4. Бенчмаркинг и сравнительный анализ
7.4.1. Сравнение с стандартами ASHRAE, Uptime Institute и DOE
7.4.2. Сравнение средних значений WUE/PUE в Индии по странам
7.4.3. Лучшие практики, принятые гипермасштабными компаниями (AWS, Google, Microsoft, Meta и др.)
8. Рынок охлаждения дата-центров в Индии – по компонентам
8.1. Решения
8.2. Услуги
9. Рынок охлаждения дата-центров в Индии – по решениям для охлаждения
9.1. Кондиционеры
9.2. Прецизионные кондиционеры
9.3. Чиллеры
9.4. Воздухораспределительные установки
9.5. Жидкостное охлаждение
9.6. Другие
10. Рынок охлаждения дата-центров в Индии – по услугам
10.1. Установка и развертывание
10.2. Поддержка и консультации
10.3. Услуги по обслуживанию
11. Рынок охлаждения дата-центров в Индии – по размеру предприятия
11.1. Крупные предприятия
11.2. Малые и средние предприятия (МСП)
12. Рынок охлаждения дата-центров в Индии – по типу пола
12.1. Поднятые полы
12.2. Неподнятые полы
13. Рынок охлаждения дата-центров в Индии – по изоляции
13.1. Поднятый пол с изоляцией горячего коридора (HAC)
13.2. Поднятый пол с изоляцией холодного коридора (CAC)
13.3. Поднятый пол без изоляции
14. Рынок охлаждения дата-центров в Индии – по структуре
14.1. Охлаждение на уровне стоек
14.2. Охлаждение на уровне рядов
14.3. Охлаждение на уровне помещений
15. Рынок охлаждения дата-центров в Индии – по применению
15.1. Гипермасштабные дата-центры
15.2. Колокационные дата-центры
15.3. Корпоративные дата-центры
15.4. Периферийные дата-центры
15.5. Другие дата-центры
16. Рынок охлаждения дата-центров в Индии – по конечному пользователю
16.1. Телекоммуникации
16.2. IT
16.3. Розничная торговля
16.4. Здравоохранение
16.5. Банковские, финансовые услуги и страхование (BFSI)
16.6. Энергетика
16.7. Другие
17. Устойчивость и экологичное охлаждение центров обработки данных
17.1. Инициативы по повышению энергоэффективности
17.1.1. Внедрение свободного охлаждения, адиабатического охлаждения и экономайзеров
17.1.2. Интеллектуальные системы управления для оптимизации температуры и воздушного потока
17.1.3. Примеры программ по улучшению эффективности
17.2. Интеграция возобновляемых источников энергии
17.2.1. Интеграция солнечных, ветровых или геотермальных источников в охлаждающие операции
17.2.2. Гибридные системы, сочетающие возобновляемую энергию с механическим охлаждением
17.3. Анализ углеродного следа и выбросов
17.4. Инициативы по сокращению выбросов парниковых газов
17.5. Сертификации LEED и Green
17.5.1. Доля охлаждающих систем, установленных в сертифицированных объектах LEED, BREEAM или Energy Star
17.5.2. Соответствие стандартам энергоэффективности ASHRAE и ISO
18. Новые технологии и инновации
18.1.1. Новые технологии и инновации
18.1.2. Жидкостное охлаждение и погружное охлаждение
18.1.3. Уровень внедрения и зрелость технологий
18.1.4. Ключевые поставщики и установки по странам
18.1.5. Сравнительный анализ: производительность, стоимость и экономия энергии
18.2. Интеграция инфраструктуры ИИ и ВВП
18.2.1. Потребность в охлаждении, вызванная кластерами обучения ИИ и системами ВВП
18.2.2. Адаптация дизайна охлаждения к рабочим нагрузкам с высокой плотностью тепла
18.3. Готовность к квантовым вычислениям
18.3.1. Требования к охлаждению для квантовых процессоров
18.3.2. Потенциальные технологии охлаждения, подходящие для квантовых сред
18.4. Модульное и периферийное охлаждение центров обработки данных
18.4.1. Стратегии охлаждения для сборных и модульных объектов
18.4.2. Компактное и адаптивное охлаждение для периферийных площадок
18.5. Автоматизация, оркестрация и AIOps
18.5.1. Интеграция термического управления на основе ИИ
18.5.2. Предиктивное обслуживание и автоматизированная оптимизация охлаждения
19. Конкурентная среда
19.1. Анализ доли рынка
19.2. Стратегии ключевых игроков
19.3. Слияния, поглощения и партнерства
19.4. Запуски продуктов и услуг
20. Профили компаний
20.1. Blue Star Ltd.
20.2. Voltas Ltd. (Tata Group)
20.3. Kirloskar Pneumatic Company Ltd.
20.4. Godrej & Boyce Manufacturing Co. Ltd.
20.5. DuroFelguera India Pvt. Ltd.
20.6. Johnson Controls International plc
20.7. Carrier
20.8. Danfoss
20.9. Vertiv Group Corp.
20.10. Schneider Electric
20.11. Mitsubishi Electric Corporation
20.12. STULZ GmbH