1. Введение
1.1. Определение и охват рынка
1.2. Методология исследования
1.2.1. Первичное исследование
1.2.2. Вторичное исследование
1.2.3. Проверка данных и предположения
1.3. Структура сегментации рынка
2. Краткое содержание
2.1. Краткий обзор рынка
2.2. Основные выводы
2.3. Рекомендации аналитиков
2.4. Прогноз рынка (2025–2035)
3. Динамика рынка
3.1. Движущие силы рынка
3.2. Ограничения рынка
3.3. Возможности рынка
3.4. Проблемы и риски
3.5. Анализ цепочки создания стоимости
3.6. Анализ пяти сил Портера
4. Охлаждение центров обработки данных в Европе – Размер и прогноз рынка
4.1. Исторический размер рынка (2020–2025)
4.2. Прогнозируемый размер рынка (2026–2035)
4.3. Анализ темпов роста рынка
4.4. Прогноз рынка по странам
5. Анализ капитальных затрат (CapEx)
5.1. Тенденции CapEx по решениям для охлаждения
5.1.1. Инвестиционные модели в воздушное, жидкостное, гибридное и погружное охлаждение
5.1.2. Доля CapEx по типу оборудования для охлаждения (CRAC/CRAH, чиллеры, градирни, экономайзеры и т.д.)
5.1.3. Региональные тенденции CapEx
5.1.4. Анализ инвестиций OEM против модернизации
5.2. Анализ возврата инвестиций (ROI) и периода окупаемости
5.2.1. ROI по типу технологии охлаждения
5.2.2. Сравнение затрат и выгод: воздушное охлаждение против жидкостного охлаждения против погружного охлаждения
5.2.3. Период окупаемости в центрах обработки данных уровня I–IV
5.2.4. Примеры экономии затрат за счет внедрения энергоэффективного охлаждения
6. Емкость и использование охлаждения центров обработки данных
6.1. Установленная мощность (МВт и кв. футы) по решениям для охлаждения
6.1.1. Установленная мощность охлаждения по типу решения и стране
6.1.2. Плотность системы охлаждения (кВт/стойка и на кв. фут)
6.1.3. Тренды расширения мощности по гипермасштабированию, колокации и корпоративным решениям
6.2. Коэффициенты использования и показатели эффективности
6.2.1. Использование системы охлаждения по сравнению с проектной мощностью
6.2.2. Средние и пиковые практики управления нагрузкой
6.2.3. Жизненный цикл оборудования и эталонные показатели производительности
6.3. Эффективность использования энергии (PUE) и энергоэффективность
6.3.1. Средний PUE по размеру дата-центра и технологии охлаждения
6.3.2. Сравнение традиционных и экологически чистых систем охлаждения
6.3.3. Вклад системы охлаждения в общее энергопотребление объекта
6.4. Плотность стоек и эффективность охлаждения
6.4.1. Тренды средней плотности стоек (кВт/стойка)
6.4.2. Адекватность охлаждения по сравнению с нагрузкой на стойку
6.4.3. Взаимосвязь между высокоплотными рабочими нагрузками (ИИ, ВВМ) и требованиями к охлаждению
7. Рынок охлаждения дата-центров, анализ потребления энергии и ресурсов
7.1. Анализ потребления энергии
7.1.1. Общее потребление энергии по типу решения для охлаждения (воздушное, жидкостное, гибридное, погружное)
7.1.2. Энергетическая интенсивность на МВт ИТ-нагрузки
7.1.3. Доля энергии охлаждения в общем энергопотреблении объекта (коэффициент нагрузки на охлаждение)
7.1.4. Годовой коэффициент энергоэффективности (EER / SEER) по типу системы охлаждения
7.1.5. Тренд снижения потребления энергии за счет автоматизации, ИИ и технологий свободного охлаждения
7.2. Анализ потребления воды
7.2.1. Эффективность использования воды (WUE) – литры на кВтч ИТ-нагрузки
7.2.2. Потребление воды по технологии охлаждения (испарительное охлаждение, адиабатическое охлаждение и т.д.)
7.2.3. Системы рециркуляции и повторного использования воды в дата-центрах
7.2.4. Влияние региональных норм по дефициту воды на выбор системы охлаждения
7.2.5. Переход от водоемких к воздушным или гибридным системам
7.3. Совмещенные показатели энерго-водной эффективности
7.3.1. Энерго-водный баланс в оптимизации охлаждения
7.3.2. Корреляция между PUE, WUE и общими эксплуатационными затратами (OpEx)
7.3.3. Примеры внедрения систем охлаждения без использования воды или с нулевым потреблением воды
7.4. Бенчмаркинг и сравнительный анализ
7.4.1. Бенчмаркинг в соответствии со стандартами ASHRAE, Uptime Institute и DOE
7.4.2. Сравнение средних значений WUE/PUE в Европе по странам
7.4.3. Лучшие практики, принятые гипермасштабными компаниями (AWS, Google, Microsoft, Meta и др.)
8. Рынок охлаждения дата-центров в Европе – по компонентам
8.1. Решения
8.2. Услуги
9. Рынок охлаждения дата-центров в Европе – по решениям для охлаждения
9.1. Кондиционеры
9.2. Прецизионные кондиционеры
9.3. Чиллеры
9.4. Воздухообрабатывающие установки
9.5. Жидкостное охлаждение
9.6. Другие
10. Рынок охлаждения дата-центров в Европе – по услугам
10.1. Установка и развертывание
10.2. Поддержка и консультации
10.3. Услуги по техническому обслуживанию
11. Рынок охлаждения дата-центров в Европе – по размеру предприятия
11.1. Крупные предприятия
11.2. Малые и средние предприятия (МСП)
12. Рынок охлаждения дата-центров в Европе – по типу пола
12.1. Приподнятые полы
12.2. Неприподнятые полы
13. Рынок охлаждения дата-центров в Европе – по типу изоляции
13.1. Приподнятый пол с изоляцией горячих коридоров (HAC)
13.2. Приподнятый пол с изоляцией холодных коридоров (CAC)
13.3. Приподнятый пол без изоляции
14. Рынок охлаждения дата-центров в Европе – по структуре
14.1. Охлаждение на уровне стойки
14.2. Охлаждение на уровне ряда
14.3. Охлаждение на уровне помещения
15. Рынок охлаждения дата-центров в Европе – по применению
15.1. Гипермасштабные дата-центры
15.2. Колокационные дата-центры
15.3. Корпоративные дата-центры
15.4. Периферийные дата-центры
15.5. Другие дата-центры
16. Рынок охлаждения дата-центров в Европе – по конечным пользователям
16.1. Телекоммуникации
16.2. IT
16.3. Розничная торговля
16.4. Здравоохранение
16.5. Банковские, финансовые услуги и страхование (BFSI)
16.6. Энергетика
16.7. Другие
17. Рынок охлаждения центров обработки данных в Европе – По странам
17.1. Европа
17.1.1. Великобритания
17.1.2. Франция
17.1.3. Германия
17.1.4. Италия
17.1.5. Испания
17.1.6. Россия
17.1.7. Бельгия
17.1.8. Нидерланды
17.1.9. Австрия
17.1.10. Швеция
17.1.11. Польша
17.1.12. Дания
17.1.13. Швейцария
17.1.14. Остальная Европа
18. Устойчивость и экологичное охлаждение центров обработки данных
18.1. Инициативы по энергоэффективности
18.1.1. Внедрение свободного охлаждения, адиабатического охлаждения и экономайзеров
18.1.2. Интеллектуальные системы управления для оптимизации температуры и воздушного потока
18.1.3. Примеры программ повышения эффективности
18.2. Интеграция возобновляемых источников энергии
18.2.1. Интеграция солнечных, ветровых или геотермальных источников в процессы охлаждения
18.2.2. Гибридные системы, сочетающие возобновляемую энергию с механическим охлаждением
18.3. Анализ углеродного следа и выбросов
18.4. Инициативы по сокращению выбросов парниковых газов
18.5. Сертификация LEED и экологические сертификаты
18.5.1. Доля систем охлаждения, установленных в объектах, сертифицированных по LEED, BREEAM или Energy Star
18.5.2. Соответствие стандартам энергоэффективности ASHRAE и ISO
19. Новые технологии и инновации
19.1.1. Новые технологии и инновации
19.1.2. Жидкостное охлаждение и погружное охлаждение
19.1.3. Уровень внедрения и зрелость технологий
19.1.4. Ключевые поставщики и установки по странам
19.1.5. Сравнительный анализ: производительность, стоимость и экономия энергии
19.2. Интеграция ИИ и инфраструктуры ВВП
19.2.1. Потребность в охлаждении, вызванная кластерами обучения ИИ и системами HPC
19.2.2. Адаптация конструкции охлаждения к нагрузкам с высокой плотностью тепла
19.3. Готовность к квантовым вычислениям
19.3.1. Требования к охлаждению квантовых процессоров
19.3.2. Потенциальные технологии охлаждения, подходящие для квантовых сред
19.4. Модульное и периферийное охлаждение центров обработки данных
19.4.1. Стратегии охлаждения для сборных и модульных объектов
19.4.2. Компактное и адаптивное охлаждение для периферийных узлов
19.5. Автоматизация, оркестрация и AIOps
19.5.1. Интеграция управления теплом на основе ИИ
19.5.2. Прогнозное обслуживание и автоматизированная оптимизация охлаждения
20. Конкурентная среда
20.1. Анализ доли рынка
20.2. Стратегии ключевых игроков
20.3. Слияния, поглощения и партнерства
20.4. Запуски продуктов и услуг
21. Профили компаний
21.1. Vertiv Group Corp.
21.2. Schneider Electric
21.3. STULZ GmbH
21.4. Rittal GmbH & Co. KG
21.5. DCX Liquid Cooling Systems
21.6. Climaveneta Climate Technologies
21.7. Airedale International Air Conditioning
21.8. Asetek Inc.
21.9. Solvay SA
21.10. Shell
21.11. Vertiv Group Corp.
21.12. Johnson Controls International plc
21.13. Carrier
21.14. Nortek Air Solutions, LLC
21.15. NTT Ltd.
21.16. nVent
21.17. PEZY Computing K.K.
21.18. Rittal GmbH & Co. KG