1. Введение
1.1. Определение и охват рынка
1.2. Методология исследования
1.2.1. Первичное исследование
1.2.2. Вторичное исследование
1.2.3. Проверка данных и предположения
1.3. Структура сегментации рынка
2. Краткое содержание
2.1. Краткий обзор рынка
2.2. Основные выводы
2.3. Рекомендации аналитиков
2.4. Прогноз рынка (2025–2035)
3. Динамика рынка
3.1. Движущие силы рынка
3.2. Ограничения рынка
3.3. Возможности рынка
3.4. Проблемы и риски
3.5. Анализ цепочки создания стоимости
3.6. Анализ пяти сил Портера
4. Тайваньский рынок охлаждения центров обработки данных – Оценка и прогноз рынка
4.1. Исторический размер рынка (2020–2025)
4.2. Прогнозируемый размер рынка (2026–2035)
4.3. Анализ темпов роста рынка
4.4. Прогноз рынка по странам
5. Анализ капитальных затрат (CapEx)
5.1. Тенденции CapEx по решениям для охлаждения
5.1.1. Инвестиционные модели в воздушное, жидкостное, гибридное и погружное охлаждение
5.1.2. Доля CapEx по типу оборудования для охлаждения (CRAC/CRAH, чиллеры, градирни, экономайзеры и т.д.)
5.1.3. Страновые тенденции CapEx
5.1.4. Анализ инвестиций OEM против модернизации
5.2. Анализ возврата инвестиций (ROI) и периода окупаемости
5.2.1. ROI по типу технологии охлаждения
5.2.2. Сравнение затрат и выгод: воздушное охлаждение против жидкостного охлаждения против погружного охлаждения
5.2.3. Период окупаемости для центров обработки данных уровня I–IV
5.2.4. Примеры экономии затрат за счет внедрения энергоэффективного охлаждения
6. Емкость и использование систем охлаждения центра данных
6.1. Установленная мощность (МВт и кв. футы) по решениям для охлаждения
6.1.1. Установленная мощность охлаждения по типу решения и стране
6.1.2. Плотность системы охлаждения (кВт/стойка и на кв. фут)
6.1.3. Тенденции расширения мощности по гипермасштабам, колокациям и предприятиям
6.2. Коэффициенты использования и показатели эффективности
6.2.1. Использование системы охлаждения против проектной мощности
6.2.2. Практики управления средними и пиковыми нагрузками
6.2.3. Жизненный цикл оборудования и эталонные показатели производительности
6.3. Эффективность использования энергии (PUE) и энергоэффективность
6.3.1. Средний PUE по размеру центра данных и технологии охлаждения
6.3.2. Сравнение традиционных и экологически чистых систем охлаждения
6.3.3. Вклад системы охлаждения в общее энергопотребление объекта
6.4. Плотность стоек и эффективность охлаждения
6.4.1. Тенденции средней плотности стоек (кВт/стойка)
6.4.2. Адекватность охлаждения против нагрузки стоек
6.4.3. Взаимосвязь между высокоплотными рабочими нагрузками (ИИ, ВВП) и требованиями к охлаждению
7. Рынок охлаждения центров данных, анализ энергопотребления и потребления ресурсов
7.1. Анализ энергопотребления
7.1.1. Общее энергопотребление по типу решения для охлаждения (воздушное, жидкостное, гибридное, погружное)
7.1.2. Энергетическая интенсивность на МВт ИТ-нагрузки
7.1.3. Доля энергии охлаждения в общем энергопотреблении объекта (коэффициент нагрузки охлаждения)
7.1.4. Годовой коэффициент энергоэффективности (EER / SEER) по типу системы охлаждения
7.1.5. Тенденция снижения энергопотребления за счет автоматизации, ИИ и технологий свободного охлаждения
7.2. Анализ потребления воды
7.2.1. Эффективность использования воды (WUE) – литры на кВтч ИТ-нагрузки
7.2.2. Потребление воды в зависимости от технологии охлаждения (испарительное охлаждение, адиабатическое охлаждение и т.д.)
7.2.3. Системы рециркуляции и повторного использования воды в центрах обработки данных
7.2.4. Влияние национальных норм по дефициту воды на выбор системы охлаждения
7.2.5. Переход от водоемких к воздушным или гибридным системам
7.3. Совместные показатели энерго-водной эффективности
7.3.1. Энерго-водный узел в оптимизации охлаждения
7.3.2. Корреляция между PUE, WUE и общими эксплуатационными затратами (OpEx)
7.3.3. Примеры внедрения систем охлаждения без использования воды или с нулевым потреблением воды
7.4. Бенчмаркинг и сравнительный анализ
7.4.1. Бенчмаркинг по стандартам ASHRAE, Uptime Institute и DOE
7.4.2. Сравнение средних значений WUE/PUE в Тайване по странам
7.4.3. Лучшие практики, принятые гипермасштабными компаниями (AWS, Google, Microsoft, Meta и др.)
8. Рынок систем охлаждения центров обработки данных в Тайване – по компонентам
8.1. Решения
8.2. Услуги
9. Рынок систем охлаждения центров обработки данных в Тайване – по решениям для охлаждения
9.1. Кондиционеры
9.2. Прецизионные кондиционеры
9.3. Чиллеры
9.4. Воздухообрабатывающие установки
9.5. Жидкостное охлаждение
9.6. Прочие
10. Рынок систем охлаждения центров обработки данных в Тайване – по услугам
10.1. Установка и развертывание
10.2. Поддержка и консультации
10.3. Услуги по техническому обслуживанию
11. Рынок систем охлаждения центров обработки данных в Тайване – по размеру предприятия
11.1. Крупные предприятия
11.2. Малые и средние предприятия (МСП)
12. Рынок систем охлаждения центров обработки данных в Тайване – по типу пола
12.1. Поднятые полы
12.2. Неподнятые полы
13. Рынок систем охлаждения центров обработки данных в Тайване – по типу изоляции
13.1. Поднятый пол с изоляцией горячих коридоров (HAC)
13.2. Поднятый пол с изоляцией холодных коридоров (CAC)
13.3. Поднятый пол без изоляции
14. Рынок охлаждения центров обработки данных Тайваня – По структуре
14.1. Охлаждение на уровне стоек
14.2. Охлаждение на уровне рядов
14.3. Охлаждение на уровне помещений
15. Рынок охлаждения центров обработки данных Тайваня – По применению
15.1. Гипермасштабные центры обработки данных
15.2. Колокационные центры обработки данных
15.3. Корпоративные центры обработки данных
15.4. Периферийные центры обработки данных
15.5. Другие центры обработки данных
16. Рынок охлаждения центров обработки данных Тайваня – По конечным пользователям
16.1. Телекоммуникации
16.2. Информационные технологии
16.3. Розничная торговля
16.4. Здравоохранение
16.5. Банковское дело, финансы и страхование (BFSI)
16.6. Энергетика
16.7. Другие
17. Устойчивость и экологичность охлаждения центров обработки данных
17.1. Инициативы по энергоэффективности
17.1.1. Внедрение свободного охлаждения, адиабатического охлаждения и экономайзеров
17.1.2. Умные системы управления для оптимизации температуры и воздушного потока
17.1.3. Примеры программ по улучшению эффективности
17.2. Интеграция возобновляемых источников энергии
17.2.1. Интеграция солнечных, ветровых или геотермальных источников в охлаждающие операции
17.2.2. Гибридные системы, сочетающие возобновляемую энергию с механическим охлаждением
17.3. Анализ углеродного следа и выбросов
17.4. Инициативы по сокращению выбросов парниковых газов
17.5. Сертификации LEED и экологические сертификаты
17.5.1. Доля систем охлаждения, установленных в сертифицированных по LEED, BREEAM или Energy Star объектах
17.5.2. Соответствие стандартам энергоэффективности ASHRAE и ISO
18. Новые технологии и инновации
18.1.1. Новые технологии и инновации
18.1.2. Жидкостное охлаждение и погружное охлаждение
18.1.3. Уровень внедрения и зрелость технологий
18.1.4. Ключевые поставщики и установки по странам
18.1.5. Сравнительный анализ: производительность, стоимость и экономия энергии
18.2. Интеграция инфраструктуры ИИ и ВВТ
18.2.1. Потребность в охлаждении, вызванная кластерами обучения ИИ и системами ВВТ
18.2.2. Адаптация дизайна охлаждения к рабочим нагрузкам с высокой плотностью тепла
18.3. Готовность к квантовым вычислениям
18.3.1. Требования к охлаждению квантовых процессоров
18.3.2. Потенциальные технологии охлаждения, подходящие для квантовых сред
18.4. Модульное и периферийное охлаждение центров обработки данных
18.4.1. Стратегии охлаждения для сборных и модульных объектов
18.4.2. Компактное и адаптивное охлаждение для периферийных объектов
18.5. Автоматизация, оркестрация и AIOps
18.5.1. Интеграция управления теплом на основе ИИ
18.5.2. Предиктивное обслуживание и автоматизированная оптимизация охлаждения
19. Конкурентная среда
19.1. Анализ доли рынка
19.2. Стратегии ключевых игроков
19.3. Слияния, поглощения и партнерства
19.4. Запуски продуктов и услуг
20. Профили компаний
20.1. Acer Inc.
20.2. GREE Electric Appliances
20.3. Delta Electronics Inc.
20.4. Foxconn Technology Group
20.5. Johnson Controls International plc
20.6. Mitsubishi Electric Corporation
20.7. Carrier
20.8. Danfoss
20.9. Vertiv Group Corp.
20.10. Schneider Electric
20.11. CoolIT Systems