1. Введение
1.1. Определение и охват рынка
1.2. Методология исследования
1.2.1. Первичное исследование
1.2.2. Вторичное исследование
1.2.3. Проверка данных и допущения
1.3. Структура сегментации рынка
2. Краткое содержание
2.1. Обзор рынка
2.2. Основные выводы
2.3. Рекомендации аналитиков
2.4. Прогноз рынка (2025–2035)
3. Динамика рынка
3.1. Движущие силы рынка
3.2. Ограничения рынка
3.3. Возможности рынка
3.4. Проблемы и риски
3.5. Анализ цепочки создания стоимости
3.6. Анализ пяти сил Портера
4. Рынок охлаждения дата-центров в Великобритании – Оценка и прогноз рынка
4.1. Исторический размер рынка (2020–2025)
4.2. Прогнозируемый размер рынка (2026–2035)
4.3. Анализ темпов роста рынка
4.4. Прогноз рынка по странам
5. Анализ капитальных затрат (CapEx)
5.1. Тенденции CapEx по решениям для охлаждения
5.1.1. Инвестиционные модели в воздушное, жидкостное, гибридное и погружное охлаждение
5.1.2. Доля CapEx по типу оборудования для охлаждения (CRAC/CRAH, чиллеры, градирни, экономайзеры и т.д.)
5.1.3. Страновые тенденции CapEx
5.1.4. Анализ инвестиций OEM против модернизации
5.2. Анализ возврата инвестиций (ROI) и периода окупаемости
5.2.1. ROI по типу технологии охлаждения
5.2.2. Сравнение затрат и выгод: воздушное охлаждение против жидкостного против погружного охлаждения
5.2.3. Период окупаемости по уровням дата-центров I–IV
5.2.4. Примеры экономии затрат через внедрение энергоэффективного охлаждения
6. Емкость и использование охлаждения дата-центров
6.1. Установленная мощность (МВт и кв. футы) по решениям для охлаждения
6.1.1. Установленная мощность охлаждения по типу решения и стране
6.1.2. Плотность системы охлаждения (кВт/стойка и на кв. фут)
6.1.3. Тенденции расширения мощности: гипермасштабные vs. колокация vs. корпоративные
6.2. Коэффициенты использования и показатели эффективности
6.2.1. Использование системы охлаждения vs. проектная мощность
6.2.2. Средние и пиковые практики управления нагрузкой
6.2.3. Жизненный цикл оборудования и эталонные показатели производительности
6.3. Эффективность использования энергии (PUE) и энергоэффективность
6.3.1. Средний PUE по размеру центра обработки данных и технологии охлаждения
6.3.2. Сравнение традиционных и экологически чистых систем охлаждения
6.3.3. Вклад системы охлаждения в общее энергопотребление объекта
6.4. Плотность стоек и эффективность охлаждения
6.4.1. Тенденции средней плотности стоек (кВт/стойка)
6.4.2. Адекватность охлаждения vs. нагрузка на стойку
6.4.3. Взаимосвязь между высокоплотными рабочими нагрузками (ИИ, HPC) и требованиями к охлаждению
7. Рынок охлаждения центров обработки данных, анализ потребления энергии и ресурсов
7.1. Анализ потребления энергии
7.1.1. Общее потребление энергии по типу решения для охлаждения (воздушное, жидкостное, гибридное, погружное)
7.1.2. Энергоемкость на МВт ИТ-нагрузки
7.1.3. Доля энергии охлаждения в общем энергопотреблении объекта (коэффициент нагрузки охлаждения)
7.1.4. Годовой коэффициент энергоэффективности (EER / SEER) по типу системы охлаждения
7.1.5. Тенденция снижения потребления энергии через автоматизацию, ИИ и технологии свободного охлаждения
7.2. Анализ потребления воды
7.2.1. Эффективность использования воды (WUE) – литры на кВтч ИТ-нагрузки
7.2.2. Потребление воды по технологии охлаждения (испарительное охлаждение, адиабатическое охлаждение и т.д.)
7.2.3. Системы рециркуляции и повторного использования воды в центрах обработки данных
7.2.4. Влияние национальных норм по дефициту воды на выбор системы охлаждения
7.2.5. Переход от водоемких к воздушным или гибридным системам
7.3. Совмещенные показатели эффективности энергии и воды
7.3.1. Связь энергии и воды в оптимизации охлаждения
7.3.2. Корреляция между PUE, WUE и общими эксплуатационными расходами (OpEx)
7.3.3. Примеры внедрения систем охлаждения без использования воды или с нулевым потреблением воды
7.4. Бенчмаркинг и сравнительный анализ
7.4.1. Сравнение с стандартами ASHRAE, Uptime Institute и DOE
7.4.2. Сравнение средних значений WUE/PUE в Великобритании по странам
7.4.3. Лучшие практики, принятые гипермасштабными компаниями (AWS, Google, Microsoft, Meta и др.)
8. Рынок систем охлаждения ЦОД в Великобритании – По компонентам
8.1. Решения
8.2. Услуги
9. Рынок систем охлаждения ЦОД в Великобритании – По решениям для охлаждения ЦОД
9.1. Кондиционеры
9.2. Прецизионные кондиционеры
9.3. Чиллеры
9.4. Воздухообрабатывающие установки
9.5. Жидкостное охлаждение
9.6. Другие
10. Рынок систем охлаждения ЦОД в Великобритании – По услугам
10.1. Установка и развертывание
10.2. Поддержка и консалтинг
10.3. Услуги по техническому обслуживанию
11. Рынок систем охлаждения ЦОД в Великобритании – По размеру предприятия
11.1. Крупные предприятия
11.2. Малые и средние предприятия (МСП)
12. Рынок систем охлаждения ЦОД в Великобритании – По типу пола
12.1. Поднятые полы
12.2. Неподнятые полы
13. Рынок систем охлаждения ЦОД в Великобритании – По типу изоляции
13.1. Поднятый пол с изоляцией горячего коридора (HAC)
13.2. Поднятый пол с изоляцией холодного коридора (CAC)
13.3. Поднятый пол без изоляции
14. Рынок систем охлаждения ЦОД в Великобритании – По структуре
14.1. Охлаждение на уровне стойки
14.2. Охлаждение на уровне ряда
14.3. Охлаждение на уровне помещения
15. Рынок охлаждения ЦОД в Великобритании – По применению
15.1. Гипермасштабные ЦОД
15.2. Колокационные ЦОД
15.3. Корпоративные ЦОД
15.4. Периферийные ЦОД
15.5. Другие ЦОД
16. Рынок охлаждения ЦОД в Великобритании – По конечным пользователям
16.1. Телекоммуникации
16.2. ИТ
16.3. Розничная торговля
16.4. Здравоохранение
16.5. Банковские, финансовые услуги и страхование (BFSI)
16.6. Энергетика
16.7. Другие
17. Устойчивость и зеленое охлаждение ЦОД
17.1. Инициативы по энергоэффективности
17.1.1. Внедрение свободного охлаждения, адиабатического охлаждения и экономайзеров
17.1.2. Умные системы управления для оптимизации температуры и воздушного потока
17.1.3. Примеры программ по улучшению эффективности
17.2. Интеграция возобновляемых источников энергии
17.2.1. Интеграция солнечных, ветровых или геотермальных источников в операции охлаждения
17.2.2. Гибридные системы, сочетающие возобновляемую энергию с механическим охлаждением
17.3. Анализ углеродного следа и выбросов
17.4. Инициативы по сокращению выбросов парниковых газов
17.5. Сертификации LEED и Green
17.5.1. Доля систем охлаждения, установленных в объектах, сертифицированных по LEED, BREEAM или Energy Star
17.5.2. Соответствие стандартам энергоэффективности ASHRAE и ISO
18. Новые технологии и инновации
18.1.1. Новые технологии и инновации
18.1.2. Жидкостное охлаждение и погружное охлаждение
18.1.3. Уровень внедрения и зрелость технологий
18.1.4. Ключевые поставщики и установки по странам
18.1.5. Сравнительный анализ: производительность, стоимость и экономия энергии
18.2. Интеграция ИИ и HPC инфраструктуры
18.2.1. Спрос на охлаждение, обусловленный кластерами обучения ИИ и системами HPC
18.2.2. Адаптация дизайна охлаждения к рабочим нагрузкам с высокой плотностью тепла
18.3. Готовность к квантовым вычислениям
18.3.1. Требования к охлаждению квантовых процессоров
18.3.2. Потенциальные технологии охлаждения, подходящие для квантовых сред
18.4. Модульное и периферийное охлаждение центров обработки данных
18.4.1. Стратегии охлаждения для сборных и модульных объектов
18.4.2. Компактное и адаптивное охлаждение для периферийных площадок
18.5. Автоматизация, оркестрация и AIOps
18.5.1. Интеграция управления теплом на основе ИИ
18.5.2. Прогнозное обслуживание и автоматизированная оптимизация охлаждения
19. Конкурентная среда
19.1. Анализ доли рынка
19.2. Стратегии ключевых игроков
19.3. Слияния, поглощения и партнерства
19.4. Запуски продуктов и услуг
20. Профили компаний
20.1. Airedale International Air Conditioning
20.2. Vertiv Group Corp.
20.3. Schneider Electric
20.4. Johnson Controls International plc
20.5. Carrier
20.6. STULZ GmbH
20.7. CoolIT Systems
20.8. Danfoss
20.9. Modine Manufacturing Company
20.10. Green Revolution Cooling (GRC)
20.11. Dell Inc.